Skip to main content
Log in

High throughput blood plasma separation using a passive PMMA microfluidic device

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation efficiency of the passive separator device, and the separation efficiency of 66.6 % was achieved. The optimum purity efficiency of 70 % was achieved for 1:100 dilution times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bhagat AAS et al (2010) Microfluidics for cell separation. Med Biol Eng Compu 48(10):999–1014

    Article  Google Scholar 

  • Chen X et al (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuators B Chem 130(1):216–221

    Article  Google Scholar 

  • Cho YI, Back LH, Crawford DW (1985) Experimental investigation of branch flow ratio, angle, and Reynolds number effects on the pressure and flow fields in arterial branch models. J Biomech Eng 107(3):257–267

    Article  Google Scholar 

  • Choi S, Park J-K (2007) Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 7(7):890–897

    Article  Google Scholar 

  • Doyeux V et al (2011) Spheres in the vicinity of a bifurcation: elucidating the Zweifach–Fung effect. J Fluid Mech 674:359–388

    Article  MathSciNet  MATH  Google Scholar 

  • Fekete Z et al (2012) Performance characterization of micromachined particle separation system based on Zweifach–Fung effect. Sens Actuators B Chem 162(1):89–94

    Article  MathSciNet  Google Scholar 

  • Fung Y-C (1973) Stochastic flow in capillary blood vessels. Microvasc Res 5(1):34–48

    Article  Google Scholar 

  • Geng Z et al (2011) A plasma separation device based on centrifugal effect and Zweifach–Fung effect. In: The 15th international conference on miniaturized systems for chemistry and life sciences

  • Hou HW et al (2011) Microfluidic devices for blood fractionation. Micromachines 2(3):319–343

    Article  Google Scholar 

  • Kanji S et al (2005) Reliability of point-of-care testing for glucose measurement in critically ill adults*. Crit Care Med 33(12):2778–2785

    Article  Google Scholar 

  • Kersaudy-Kerhoas M, Sollier E (2013) Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13(17):3323–3346

    Article  Google Scholar 

  • Khumpuang S et al (2007) Blood plasma separation device using capillary phenomenon. In: Solid-state sensors, actuators and microsystems conference, 2007. TRANSDUCERS 2007. International: IEEE, 1967–1970

  • Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2(1):1–13

    Article  Google Scholar 

  • Kersaudy-Kerhoas MW et al (2010a) Validation of a blood plasma separation system by biomarker detection. Lab Chip 10(12):1587–1595

    Article  Google Scholar 

  • Kersaudy-Kerhoas MW et al (2010b) Hydrodynamic blood plasma separation in microfluidic channels. Microfluidics Nanofluidics 8(1):105–114

    Article  Google Scholar 

  • Kitaoka H, Takaki R, Suki BI (1999) A three-dimensional model of the human airway tree. J Appl Physiol 87(6):2207–2217

    Google Scholar 

  • Leverett LB et al (1972) Red blood cell damage by shear stress. Biophys J 12(3):257

    Article  Google Scholar 

  • Li C et al (2012) The dual role of deposited microbead plug (DMBP): a blood filter and a conjugate reagent carrier toward point-of-care microfluidic immunoassay. Talanta 97:376–381

    Article  Google Scholar 

  • Sakamoto H et al (2012) Plasma separation PMMA device driven by capillary force controlling surface wettability. Micro Nano Lett IET 7(1):64–67

    Article  MathSciNet  Google Scholar 

  • Shamsi A et al (2014) Low cost method for hot embossing of microstructures on PMMA by SU-8 masters. Microsyst Technol 20(10):1925–1931

    Article  MathSciNet  Google Scholar 

  • Sollier E et al (2009) Passive microfluidic devices for plasma extraction from whole human blood. Sens Actuators B Chem 141(2):617–624

    Article  Google Scholar 

  • Sollier E et al (2010) Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices. Biomed Microdevices 12(3):485–497

    Article  Google Scholar 

  • Svanes K, Zweifach BW (1968) Variations in small blood vessel hematocrits produced in hypothermic rats by micro-occlusion. Microvasc Res 1(2):210–220

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471

    Article  Google Scholar 

  • Yang S, Ündar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7):871–880

    Article  Google Scholar 

  • Yoon JS, Germaine JT, Culligan PJ (2006) Visualization of particle behavior within a porous medium: Mechanisms for particle filtration and retardation during downward transport. Water Resour Res 42(6):W06417

    Article  Google Scholar 

  • Zhu Q, Trau D (2012) Multiplex detection platform for tumor markers and glucose in serum based on a microfluidic microparticle array. Anal Chim Acta 751:146–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shamloo.

Additional information

A. Shamsi and A. Shamloo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsi, A., Shamloo, A., Mohammadaliha, N. et al. High throughput blood plasma separation using a passive PMMA microfluidic device. Microsyst Technol 22, 2447–2454 (2016). https://doi.org/10.1007/s00542-015-2664-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2664-7

Keywords

Navigation